Principles of Monitoring

James H. Philip, M.E.(E.), M.D. C.C.E.
Anesthesiologist and
Director of Bioengineering, Brigham and Women's Hospital
Medical Liaison, Partners Department of Biomedical Engineering
Associate Professor of Anaesthesia, Harvard Medical School

© Copyright 1989 - 2010, James H Philip, all rights reserved.
Principles of Monitoring

James H. Philip, M.E.(E.), M.D. C.C.E.
Anesthesiologist and
Director of Bioengineering, Brigham and Women's Hospital
Medical Liaison, Partners Department of Biomedical Engineering
Associate Professor of Anaesthesiology, Harvard Medical School

Gas Man® and Med Man Simulations, Inc. are a nonprofit charitable organization.
I have performed research on many of the drugs and devices described.
Through the BWH Ventures Office, I have a financial interest in some of the products described.
Principles of Monitoring

James H. Philip, M.E.(E.), M.D. C.C.E.
Anesthesiologist and
Director of Bioengineering, Brigham and Women's Hospital
Medical Liaison, Partners Department of Biomedical Engineering
Associate Professor of Anaesthesia, Harvard Medical School

Please mentally substitute “Nurse Anesthetist” for “Anesthesiologist” if this applies to you
Anesthesia = "without sensation"

By loss of sensation, anesthesia allows the patient's brain to tolerate pain that the body was not designed to survive.
General Anesthesia

Requires continuous resuscitation during the ongoing administration of lethal drugs
General Anesthesia

Requires continuous resuscitation during the ongoing administration of lethal drugs

Every drug I administer is dangerous

Therapy I provide is life-preserving
Monitoring Goal

Protect the patient against adverse outcomes
The Acute Patient Care Loop describes the anesthesiologist’s actions in clinical management.

- Patient
- Monitor
- Anesthesiologist

The Acute Patient Care Loop describes the anesthesiologist’s actions in clinical management.

- Patient
- Monitor
- Anesthesiologist

The cycle involves taking measurements, interpreting the data, and managing the patient's care.
The Acute Patient Care Loop describes the anesthesiologist’s actions in clinical management:

1. **Patient** → **Monitor**
 - **Measurements**

2. **Monitor** → **Anesthesiologist**
 - **Interpretation**

3. **Anesthesiologist** → **Patient**
 - **Clinical Management**
The Acute Patient Care Loop describes the anesthesiologist’s actions in clinical management.
Set of all variables that must be known to manage the case.

The “case” is the patient, the diagnosis, and the treatment.

For an Anesthesiologist, this is the patient and his pre-existing conditions who begins awake, is rendered unconscious, undergoes surgery, and is then re-animated to his initial state.

Dimensions of Life, under anesthesia

Circulation
Metabolism
Respiration
Anesthesia

If these are independent and a complete set

These are the dimensions, Eigenvectors of life

There are measures along these dimensions

These are the Eigenvalues of life

Goal of monitoring is to monitor the Eigenvalues
More on theory later
Anesthesia Monitoring History
In the distant past

We monitored our patients using only our senses

A finger on the pulse
A hand on the reservoir bag
Listening to sounds through a stethoscope.
Observing color of skin and lips
In the 1960s

We began to monitor the cardiovascular system
We measured it in many ways

We believed that detecting cardiac arrest fast was important

I was an HP (Hewlett Packard) Engineer back then
We really did work hard to detect a stopped heart

We did not yet realize that under anesthesia cardiac arrest is almost always the result of lack of ventilation or lack of oxygen

For a long time without detection
In the 1970s we learned

Most anesthesia mishaps are due to human error
Equipment contributes little to the problem
Better designed equipment can detect errors
Vigilance aids can improve outcome by detecting problems before they occur
This applies especially to airway problems

Cooper JB. Critical Incident Studies (Anesthesiology) 1976-1990. (Harvard Data)
The greatest danger was circuit disconnection
Which we could easily miss with the technology we had, then
Especially at times of decreased vigilance
In the early 1980s patients learned

Anesthesia is dangerous
1,000 times more dangerous
than in an airplane 30,000 feet in the air.

ABC Television 20/20 Report, 1982
In the 1980s we learned

Two monitors could make a difference

Capnography (airway CO2) detects many problems early

Pulse oximetry detects most problems, but does so late

Standards could improve outcome

1985 Harvard Anesthesia Monitoring Standard

1) **Continuous presence** of a dedicated anesthesia care provider

2) Blood pressure and heart rate **CV measured & recorded** at least every five minutes

3) Electrocardiogram **ECG continuously displayed**

4) Circulation **continuously monitored** - any technique

5) Ventilation **continuously monitored** - any technique

6) **Disconnect**-detecting device used during mechanical ventilation

7) Oxygen in the breathing circuit **monitored with alarm**

8) Temperature monitoring capability
Standards for Patient Monitoring During Anesthesia at Harvard Medical School

John H. Eichhorn, MD; Jeffrey B. Cooper, PhD; David J. Cullen, MD; Ward R. Maier, MD; James H. Philip, MD; Robert G. Seeman, MD
Standards for Patient Monitoring During Anesthesia at Harvard Medical School

John H. Eichhorn, MD; Jeffrey B. Cooper, PhD; David J. Cullen, MD; Ward R. Maier, MD; James H. Philip, MD; Robert G. Seeman, MD
Anesthesia Safety Saving Lives

Nine doctors hope others will adopt standards
By Judy Foreman
Globe Staff

As many as 1400 anesthesia deaths could be avoided each year if doctors nationwide abided by minimal but strict safety standards, says a team of nine Harvard doctors in a new report.
Boston Globe front page headline could have read

Sloppy docs mop shop

or

Killer docs - cleaning up their act too little and too late

We were fortunate.
The press was supportive
1986 ASA Monitoring Standard

Extended the Harvard Monitoring Standard

Encouraged the use of
- Pulse Oximetry
- Capnography
- Airway gas flow or volume
1989 Amendment to ASA Mon. Std.

Required pulse oximetry to assess blood oxygenation during general anesthesia.
1990 Amendment to ASA Mon. Std.

Required CO2 measurement to verify correct placement of the tracheal tube.

Encouraged use of CO2 monitoring throughout case.
Most authorities believe Anesthesia mortality has fallen from 1/3,000 in 1985 to 1/30,000 or 1/300,000 in 1996.

ICPAMM Report, 1996
(Intl Comm Peri-op Anes M&M)
Anesthesia insurance rates have fallen and continue to fall

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>$20,000</td>
</tr>
<tr>
<td>1990</td>
<td>$10,000</td>
</tr>
<tr>
<td>2000</td>
<td>$10,000</td>
</tr>
<tr>
<td>2005</td>
<td>$10,000</td>
</tr>
</tbody>
</table>
Anesthesia insurance rates have fallen and continue to fall. Why?

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>$20,000</td>
</tr>
<tr>
<td>1990</td>
<td>$10,000</td>
</tr>
<tr>
<td>2000</td>
<td>$10,000</td>
</tr>
<tr>
<td>2005</td>
<td>$10,500</td>
</tr>
</tbody>
</table>
Anesthesia insurance rates have fallen and continue to fall.

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>$20,000</td>
</tr>
<tr>
<td>1990</td>
<td>$10,000</td>
</tr>
<tr>
<td>2000</td>
<td>$10,000</td>
</tr>
<tr>
<td>2005</td>
<td>$10,000</td>
</tr>
</tbody>
</table>

Why?

We stopped hurting people!
Other specialties have not fared as well
Most anesthesia injury & death today is caused by

Failed airway management
Other complex events
Many require additional resources
Including
 Equipment, supplies, help, consults
LMA (laryngeal mask airway)
Special intubating scopes & devices
Surgical Airway
Again, Most anesthesia injury & death today is caused by

Failed airway management
Other complex events
Airway and CV complications may occur with regional anesthesia
High Spinal or High Epidural block
Intravascular Injection
Unconscious sedation
How and why we monitor in Anesthesia
Risk Management in Anesthesia

Monitor when you must

You must monitor for

That which goes wrong commonly and causes a minor bad outcome
That which goes wrong uncommonly but causes a very bad (expensive) outcome

Expected Value of a Loss =
 Cost or Value of the loss if it occurs
 \times
 Probability that the loss will occur

The optimal amount to spend to avert a loss is the Expected Value of the Loss
Spend less and have a loss; This is Negligence
Spend more and have no loss: This is conservative, overly safe, possibly wasteful
Spend this amount and have or have not a loss; This is Properly Managed Risk

Judge Learned Hand, Fifth Federal Circuit Court of New York, 1932

Effective State Monitoring

Monitor the Eigenvalues of Life under Anesthesia

Circulation

Metabolism

Respiration

Anesthesia

Monitor the physiology of each
Effective (Physiologic) Monitor

Select Physiology to monitor
Select the Variable that monitors the physiology
Monitor the variable Continuously
Extract Features from the continuous variable
Compare Observed to the Expected value
Interpret the deviation of observed from expected
Communicate the Interpretation - Alert or Alarm
Effective (Physiologic) Monitor

Select Physiology = Breathing
Variable to Monitor = Airway Capnogram
Mon. Continuously = Sample Airway Gases
Features = Rate, Max (Exp), Min (Insp), Plateau
Expectation = No Change unless Vent Change
Need a model for Vent Change -> pCO₂ Change
Interpret = ETpCO₂ change without change in Vent
Communicate = Audio and Visual Alert

Monitor the patient’s state
We start out with the patient in the correct state.

Correct Patient State

The correct state could be coded as green

Incorrect Patient State

First level of state definition. All states are divided into correct and incorrect states. The green becomes yellow.
Incorrect along what dimension?

The second level of state definition.
The incorrect state has been expanded to express the fours systems that can be deranged.
The third level of state definition. As an example, derangement of the circulation has been divided into three states.
Treatment follows state

Circulation

Volume
- Medium: Blood

Pressors
- Conduits: Blood Vessels

Assist
- Pump: Heart

Tx according to Dx
Treat according to diagnosis
Anesthetization Incorrect

- Anesthesia
 - Sleep
 - Amnesia
 - Reflexes blocked
 - Paralysis
Respiration Incorrect

Respiration

- Ventilation V_A
- Inspired Oxygen P_{1O_2}
- Perfusion CO
- Gas Exchange
 - Shunt, Dead Space, Diffusion
An important attribute of State is Severity

Severity is the opposite of Safety

Patient State Severity Diagram =
Patient Safety State Diagram

Patient Safety State Diagram

Patient Safety State Diagram

ACCEPTABLE OUTCOMES

CORRECT STATE

1° Patient change

INCORRECT REVERSIBLE STATE

Tx Incorrect

Tx Correct

ACCEPTABLE STATES

Patient Safety State Diagram

ACCEPTABLE OUTCOMES

CORRECT STATE

1° Patient change

INCORRECT REVERSIBLE STATE

Tx Incorrect

Dx Known or Missed Briefly

ACCEPTABLE STATES

Patient Safety State Diagram

ACCEPTABLE OUTCOMES

CORRECT STATE

1° Patient change

INCORRECT REVERSIBLE STATE

Tx Incorrect

Successful Corrective Tx

Dx Known or Missed Briefly

ACCEPTABLE STATES

ACCEPTABLE OUTCOMES

1° Patient change
INCORRECT REVERSIBLE STATE
Dx Missed
Tx Unsuccessful
SUCCESSFUL SALVAGE TX
SUCCESSFUL MAINTENANCE TX

ADVERSE OUTCOMES

SEVERE OUTCOMES
REVERSIBLE MORBIDITY

UNACCEPTABLE STATES

Patient Safety State Diagram

Oxygen deprivation -> fast transition

ACCEPTABLE OUTCOMES

ADVERSE OUTCOMES

SEVERE OUTCOMES

GRIEVIOUS OUTCOMES

ACCEPTABLE STATES

UNACCEPTABLE STATES

1° Patient change
Tx Correct
Successful Corrective Tx
Dx Known or Missed Briefly
Successful Salvage Tx
Successful Maintenance Tx
Successful Chronic Tx
Tx Unsuccessful
Dx Missed
REVERSIBLE MORBIDITY
Successful Corrective Tx
Dx Known or Missed Briefly
Successful Salvage Tx
Successful Maintenance Tx
Successful Chronic Tx
Tx Unsuccessful
Dx Missed
REVERSIBLE MORBIDITY
DEATH

CORRECT STATE
INCORRECT REVERSIBLE STATE

Thank you
Monitor needs to know expectation
With inhalation anesthesia

We can monitor and predict
Gas and vapor concentration
In the breathing circuit
In the patient
Gas Man® does this
Potential Derangements

The second level of state definition. The incorrect state has been expanded to express the four systems that can be deranged.

- Circulation
- Metabolism
- Anesthesia
- Respiration
Real monitors with real screens and controls
Safety Screen - meets Monitoring Standard
Numeric Display
System Neighborhoods

1 Anesthetization

2 Oxygenation

3 Ventilation
Graphic Trend Page 1 - Anesthetization
Graphic Trend Page 3 - Ventilation
Other Monitors

General Electric = GE = Marquette
Spend time pushing buttons (every button)
Figure them out
Ask for help
Ask
 Biomed,
 Your Attending
 Me
Department Web Site
GE Solar 8000 with Gas Trends selected
Datex Ultima

<table>
<thead>
<tr>
<th>CO₂ (mL%)</th>
<th>O₂</th>
<th>H₂O</th>
<th>DES</th>
<th>NAC</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>33</td>
<td>0</td>
<td>5.0</td>
<td>0.8</td>
<td>9</td>
</tr>
</tbody>
</table>

ET: 1
F: 38
Department Web Site - later

http://www.etherweb.bwh.harvard.edu/
Education/
Educational Resources/
Technology matters/
Anesthesia Technology Resources/

http://www.etherweb.bwh.harvard.edu/
http://www.asahq.org/publicationsAndServices/sgstoc.htm
Alarms and Alerts
Alarms and Alerts

Try to keep them all ON, all the time

If you can’t keep an alarm ON, there is a problem

Either

- patient vital signs are bad, for real
- monitor measurement error or malfunction
- monitor design inadequacy

If something alarms too often, report it

To: Biomedical Engineering
Page: 1-1055
Outlook e-mail: BWH Anes Biomed
Voicemail: 3-1291
Cc: me (jphilip@partners.org)
Smart Alarms communicate Information
Conventional Monitors

Alarms are always turned off if there is a switch.
Data is reported and displayed.
Data is disconnected from past and future.
Repetitive waveforms are shown as if there is new information conveyed.

But, data which does not change knowledge is not information.

Information changes knowledge.
The static knowledge is BP is stable at 120/80.
Alerts communicate information

Information is that which changes our knowledge.
Each BP = 120/80 reading conveys no information.
When BP rises to 150/90
That is information!
That needs to be communicated!

Smart Alarms communicate Information.
Alert Zones
Alert Zones
Where we are
Where we Alert

Ohmeda Central Display 1992 Alert Zones

Alert Zones
Future Monitoring

 Probably not today
What will we monitor next?
Brain Monitoring - will it become Standard?
Oxygenation of specific tissues? What tissues?
Automated Information Management - when?
Predicted drug level in target organ now
Predicted time to criteria (e.g., awake, asleep)
Learn More - BWH Anes Department Web Site

Learn More - Anes Department Web Site
http://bwhanesthesia.org and click:
Education
Anesthesia Technology

http://www.asahq.org/publicationsAndServices/sgstoc.htm

or

http://www.asahq.org/publicationsAndServices/standards/02.pdf
Thank you