Physics of Reservoir Bags
from
Physics of Anesthesia Delivery Systems,
ASEAN Congress of Anesthesiologists, Cebu, Philippines, 2001

© 2001, James H. Philip, all rights reserved
Physics of Reservoir Bags

James H. Philip, ME(E), MD, CCE
Anesthesiologist, Department of Anesthesia
Director of Technology Assessment (2001),
Brigham and Women's Hospital
Associate Professor of Anaesthesia
Harvard Medical School
Boston Massachusetts
USA
Should we use the FGF of the Anesthesia Machine as a source of oxygen for Nasal Prongs or loose Mask?

No

The breathing circuit will not be ready to resuscitate from a respiratory emergency

Add a flowmeter somewhere
Temporary Solution - Flowmeter on the wall
Permanent Solution

Oxygen flowmeter on every Anesthesia Machine

Add-on
Permanent Solution

Oxygen flowmeter on every Anesthesia Machine

Add-on or Built-in

(Ohmeda Aestiva)
Should we use the **Y-piece** of the breathing circuit as a source of oxygen for Nasal Prongs?

No

The Physics does not work

* AKA Wye-piece
FGF Set to 8 LPM
Close the Relief Valve*

* AKA
Pop Off Valve,
APL (Adjustable Pressure Limiting) Valve
Insert an airway adapter to connect oxygen hose.
Oxygen hose here
But, we see and hear an alarm “Continuing Pressure”
Continuing

\[P = 38 \text{ cmH}_2\text{O} \]
The bag grows bigger
And bigger
The FGF is still 8 LPM
So, I open the relief valve
And, I carefully adjust the relief valve to keep the bag constant and reasonable size, with No Alarm.
Pressure falls to 3 cmH2O.
I am content.
Experiment 2
How much flow was going to the nasal prongs?
I close the relief valve

I set the flow until pressure is 3 cmH$_2$O, just like before
The flow is 400 mL/min
The flow is 400 mL/min

That is what was flowing before

That is what is flowing now
The remainder of the 8 L/M Flow went out the pop off valve.
The patient was getting almost no supplemental oxygen
Flow and Pressure are related through Resistance

If the **pressure** is what it was before, and the **tubing** is what it was before, the **flow** must be what it was before.

Pressure was always 3 cmH$_2$O.
Flow was always 400 mL/min.
Remainder of the the 8 L/min flow went out the pop off valve!

Flow = Pressure / Resistance; $F = \frac{P}{R}$
When we close the relief valve

Reservoir bag properties are important

Compliance is the important property

Compliance = Change in Volume / Change in Pressure

\[
C = \frac{\Delta V}{\Delta P}
\]

Stiffness is 1 / Compliance

\[
S = \frac{\Delta P}{\Delta V}
\]
Bag Compliance is not constant
It varies with bag volume
Bag Compliance is not constant
It varies with bag volume

\[C = \frac{\Delta V}{\Delta P} \]

When the bag is empty and filling \(P = 0 \)
Compliance is infinite \(C = \frac{2\ L}{0} = \infty \)

When the bag is full and stretching
Compliance has a value \(C = \frac{3\ L}{40\ \text{cmH}_2\text{O}} = .05 \)

When the bag has stretched further
Pressure does not rise
Compliance is infinite \(C = \frac{\Delta V}{0} = \infty \)
Bag Compliance is not constant

It varies with bag volume

\[C = \frac{\Delta V}{\Delta P} \]

When the bag is empty and filling
Compliance is infinite \[C = \frac{2 \text{ L}}{0} = \infty \]

When the bag is full and stretching
Compliance has a value \[C = \frac{3 \text{ L}}{40 \text{ cmH}_2\text{O}} = .075 \]

When the bag has stretched further
Pressure does not rise
Compliance is infinite \[C = \frac{\Delta V}{0} = \infty \]

How do our bags compare?
 Specifies a pressure of
35 - 60 cmH$_2$O
with bag at 4 x nominal size (4 x 3 = 12 L)
filled at 6 LPM (for 2 minutes)

Bag must revert to original size within 10%
Typical Reservoir Bags

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Pressure (cmH₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM Standard</td>
<td>P = 35 - 60</td>
</tr>
</tbody>
</table>
| Latex Blue | P = 48 | ✓
| Latex-Free Black | P = 54 | ✓
| Brand M Latex-free Green | P = 46 | ✓
| Brand S Latex-free | P = 70 | X

X If a reservoir bag feels stiff, don’t use it.

The manufacturer voluntarily recalled this product.
Bag P vs V (Compliance) Curve

“3 L bag”

Pressure

42 cm H$_2$O

3 L Volume
Flow, Volume, Pressure, Time Relationship for anesthesia reservoir bag

- Flow (F)
- Volume (V): 3 L
- Pressure (P): 40 cmH₂O
- Time (t)
Bag stiffens, then softens

$S = \frac{dP}{dV}$

$42 \text{ cm H}_2\text{O}$

3 L
The bag grows slowly as volume accumulates.
Pressure stays at 40 or, may fall to 30 cmH$_2$O
This bag grew to 285 L

Pressure was still 30 cmH$_2$O
Pop!
The End of the Bag
Pop!
The End of the Bag
And of this lecture
Thank you